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Abstract 
 

The effect of uniform rotation on the onset of steady Rayleigh-Bénard-Marangoni convection in a horizontal 

layer of liquid is investigated, using the modified linear stability analysis. The upper boundary surface of the 

liquid layer is free where surface tension gradients arise on account of variation of temperature and the lower 

boundary surface is rigid, each subject to constant heat flux condition. Both mechanisms namely, surface tension 

and buoyancy causing instability are taken into account. The Galerkin method is used to obtain the eigenvalue 

equation which is then computed numerically. Results of this analysis indicate that the critical eigenvalues in the 

presence of a uniform rotation are greater in a relatively hotter layer of liquid than a cooler one under identical 

conditions otherwise. The asymptotic behaviour of both the critical Rayleigh and Marangoni numbers for large 

values of the Taylor number are also obtained. During the course of this analysis, we also correct the 

inaccuracies in the work of earlier authors.  

 

Keywords: Buoyancy, Convection, Insulating, Linear stability, Rotation, Steady, Surface tension. 

 

1. Introduction 

The rotation is known to have stabilizing effect, a fact that has already been established by 

Chandrasekhar [1] for the buoyancy driven convection, and by Vidal and Acrivos [2] for the 

surface tension driven convection. McConaghy and Finlayson [3] re-examined the problem 

considered by Vidal and Acrivos [2] on the possibility of oscillatory convection in a rotating 

fluid layer. Namikawa [4] studied the effect of rotation on the steady onset of combined 

surface tension and buoyancy driven convection while Kaddame and Lebon [5, 6] investigated 

the onset of steady and oscillatory Bénard Marangoni convection with rotation. Recently, the 

effect of uniform rotation on the onset of combined surface tension and buoyancy driven 

convection has been studied by Gupta and Dhiman [7] for thermally conducting case of the 

rigid lower boundary and insulating free upper boundary, using the modified linear stability 

analysis of Banerjee et al [8].  

In this paper, we investigate the effect of uniform rotation on the onset of combined surface 

tension and buoyancy driven thermal convection in a relatively hotter or cooler layer of liquid 

in which the heat flux across each boundary is kept constant, using the modified linear 

stability analysis. The present analysis extends the work of Gupta and Surya [9] to include the 

effect of uniform rotation. The Galerkin method is used to obtain the eigenvalue equation 

analytically. The numerical results obtained for a wide range of the parameters involved are 

presented. The results of this analysis indicate that the rotation suppresses convection more 

effectively in a relatively hotter layer of liquid than the cooler one, irrespective of whether the 
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two mechanisms namely, surface tension and buoyancy causing instability act individually or 

simultaneously. The two mechanisms causing instability are found to reinforce each other and 

are perfectly coupled in the absence of rotation. However, for increasing speed of rotation, it 

is found that the two mechanisms causing instability no longer remain perfectly coupled that 

is, coupling between them becomes less tight. It is interesting to note that the critical wave 

number at the onset of convection is found to be zero up to a certain threshold speed of 

rotation.   The asymptotic behavior of both the critical Rayleigh and Marangoni numbers for 

large values of the Taylor number are obtained. A detail description of the marginal stability 

curves showing the influence of the uniform rotation on the onset of convection in a relatively hotter 

or cooler layer of liquid is also given. During the course of this analysis, we correct the 

inaccuracies in the numerical results of Friedrich and Rudraiah [11].  

2. Formulation of the Problem 

We consider an infinite horizontal layer of viscous and incompressible fluid of uniform 

thickness d heated from below which is kept rotating with a constant angular velocity   

about an axis parallel to the direction of gravity g  . The lower boundary surface of the layer of 

liquid is rigid and the upper surface is free non-deformable where surface tension gradients 

arise on account to variation of temperature with the upper free surface open to ambient air 

where surface tension gradients arise due to temperature perturbations. We choose a Cartesian 

coordinate system of axes with the x and y axis in the plane of the lower surface and the z-axis 

along the vertically upward direction so that the fluid is confined between the planes at z = 0 

and z = d. A temperature gradient is maintained across the layer by maintaining the lower 

boundary at a constant temperature T0 and the upper boundary at T1 (< T0). The surface 

tension on the upper free surface of the fluid is regarded as a function of temperature only 

which is  given by the simple linear law 
1 1( )T T      where the constant 

1  is the 

unperturbed value of   at the unperturbed surface temperature 
1T T  and 

1
( / )T TT       

represents the rate of change of surface tension with temperature, evaluated at temperature 
1T , 

and surface tension being a monotonically decreasing function of temperature,   is positive. 

We wish to investigate the effect of the rotation on the onset of convection driven under the 

joint action of surface tension and buoyancy, in the framework of modified linear stability 

analysis of Banerjee et al [8]. Following Banerjee et al [8], we can write modified linearized 

perturbation equations under uniform rotation in the relevant context as

    2 2
2 2

2 2
2 ,w g

t x y z
   

     
        

                                                                      

(2.1) 

where 
v u

x y


 
 
 

   

is the z-component of vorticity. 

 

2

2 0(1 ) ,T w
t


   

 
    

 
                                                                                        (2.2)  

2 2 .
w

t z
  

 
   

 
                                                                                                            (2.3) 

Where w  is the perturbation velocity   is the perturbation temperature and ρ is the density of 

fluid. The kinematic viscosity , the thermal diffusivity , the gravitational acceleration g, the 

temperature gradient   which is maintained and are each assumed to be constant. Further, 

that coefficient α2 (due to variation in the temperature) is a constant that ranges from 0 to 410  

for the liquid with which we are most concerned, 
2 2 2

2

2 2 2x y z

  
   

  
and t denotes time. 
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In seeking solutions of the Eqn. (2.1), (2.2) and (2.3), we must satisfy certain boundary 

conditions. The boundary conditions at the lower rigid and thermally insulating surface  

z = 0 are  

0, 0, 0, 0.
w

w
z z




 
   

                                                                      
(2.4a, b, c, d)  

The boundary conditions at the upper free and thermally insulating surface z = d are 

      

2
2

12
0, , 0, 0,

w
w

z z z

 
  

  
    

  
                           (2.5a, b, c, d) 

Where 
2 2

2

1 2 2
.

x y

 
  

 
 

We now suppose that the perturbations ,w   and 
zh are of the form 

[ , , ] [ ( ), ( ), ( )]exp[ ( ) ],x yw w z z Z z i a x a y pt    
   

Where 2 2

x ya a a   is the wave number of the disturbance and p is the time constant (which 

can be complex). We now introduce the non-dimensional quantities using 
2, / , / and /d d d d      as the appropriate scales for length, time, velocity and temperature 

respectively and putting 
2 2 2

*
* * * *, , , , .

Rawd pd Zd
a ad w p Z

d




    
    

 

We now let x, y and z stand for co-ordinates in the new units and omitting asterisk for 

simplicity, Eqn. (2.1)-(2.3) and boundary conditions (2.4a, b, c, d)-(2.5a, b, c, d) can be 

reduced to the following non-dimensional form 

  
1

2 2 2 2 2 ,D a D a p w DZ     T
                                       

(2.6) 
 

   2 2 2

2 0 2 0(1 )   1 ,rD a T pP Ra T w       
                              

(2.7)  

  
1

2 2 2  ,D a p Z Dw   T
                                                                             

(2.8)

0, 0, 0, 0, at 0,w Dw D Z z                                              (2.9a, b, c, d)  

20, 0, 0, 0, at = 1.w D w D DZ z           (2.10a, b, c, d)  

where 2 4 24 /d  T is the Taylor number, 4 /R g d   is the Rayleigh number, /rP    

is the thermal Prandtl number and the parameter 2/ /M R g d     with 2 /M d  as 

the Marangoni number, characterizes the strength of surface tension relative to buoyancy.                                                     

We restrict our analysis to the case when the marginal state is stationary so that the marginal 

state is characterized by setting 0p   in Eqn. (2.6)-(2.8). Thus equations governing the 

stationary marginal state are obtained as 

     
 

1
2

2 2 2 ,D a w DZ  T
                                                                    

(2.11) 

2 2 2

2 0( ) (1 ) ,D a Ra T w                                               (2.12) 

 
1

2 2 2  .D a Z Dw  T
                                                                

(2.13) 

The Eqn. (2.11)-(2.13) together with boundary conditions (2.9a, b, c, d)-(2.10a, b, c, d) 

constitute an eigenvalue problem of order eight. 

3. Solution of the Problem 

The single term Galerkin method is convenient for solving the present problem (Finlayson 

[10]). Accordingly, the unknown variables w,   and Z are written as 
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      1,w Aw   1,B    and  
1,Z CZ                                                (3.1) 

in which A, B and C are constants 
1,w  1  and 

1Z  are the trial functions, which are chosen 

suitably satisfying the boundary conditions (2.9a, b, c, d)-(2.10a, b, c, d). Multiplying Eqn. 

(2.11) by w, Eqn. (2.12) by ,  and Eqn. (2.13) by 
1,Z integrating the resulting equations with 

respect to z from 0 to 1 using the boundary conditions (2.9a, b, c, d)-(2.10a, b, c, d). 

Substituting for w,   and Z  from (3.1) and eliminating A, B and C from resulting system of 

equations, we obtain the following eigenvalue equation 

       

  

     

     

   

1
2 2 22 2 4 2

2 22 2

2 0

1
2 222

2 (1) (1) ( )

1 0 0,

( ) 0

D w a Dw a w w Dw wDZ

Ra T w D a

Z Dw DZ a Z

 

   

    

  



T

T

             (3.2) 

 Where   denotes integration with respect to z from z = 0 to 1 and suffixes have been 

dropped for simplicity while writing the Eq. (3.2). The eigen value Eqn. (3.2) may be put in    

 the following form 

   

         
     

   

22

2 0

2 2 22

2 2 2 2 22 2 4 2

2 22

1

1 (1) (1)

2 .

R
T a w Dw w

wDZ D a
D w a Dw a w D a

DZ a Z

   

 
 

 
   
 

                   

T

                     

(3.3) 
 We select the trial function 

 

         2 1 3
1 , 1, and 1

4 24 2 2

z
w z z z Z z

     
          

    
,                         (3.4) 

Such that they satisfy all the boundary conditions (2.9a, b, c, d)-(2.10a, b, c, d). It is important 

to remark here that above choice of the velocity trial function given by (3.4) is found to be 

useful for cases in which the two mechanisms (buoyancy and surface tension) causing 

instability act individually or simultaneously. Substitution of trial functions given by (3.4) into 

the eigen value Eqn. (3.3), we get 

 

2 2

2 4

2 2

2 0

2

2

2

1 1 7 5

1 1 8 448 48 6912
1

320 48 (1 ) 15 4201 1 1 1

12 180 12 180

1

6

240 1 1
5 2

12 1

       

80

a a
R

T

a



       
            

                                         

 
    

  
  

             

T
.









               (3.5) 
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4. Numerical Results and Discussion 

The numerical calculations are carried out using the symbolic algebraic package Mathematica, 

for assigned values of the parameters 
2 0, T and T . We seek the minimum of R as a function 

of the wave number a to obtain values of the critical Rayleigh number Rc and corresponding 

critical wave number. Validation of the computer program is achieved through verification of 

existing results obtained by Gupta and Surya [9].  

The limiting cases of the parameter Γ in the relation (3.5), give rise to the following two cases 

namely, when buoyancy is the sole agency causing instability and when surface tension is the 

sole agency causing instability. 

 

Case I When buoyancy is sole agency causing instability 

When 0 (or 0)M  implies that in the absence of surface tension effect, buoyancy is the 

sole agency causing instability. In this case, we obtain R from the eigen value Eqn. (3.5) in 

terms of a, α2T0 and T as  

 

2 4

2
2 0

320 2 19
1

(1 ) 21 4536 108 5 2

a a
R

T a

  
    

   

T
.                                                            (4.1) 

The numerical values of the critical Rayleigh number Rc and corresponding wave number ,Ra  

computed using the relation (4.1), for various values of α2T0 and T  are presented in Table 1. 

When T  = 0 (in the absence of rotation), from Table 1 we find that values of both Rc and 
Ra  

for various values of α2T0 agree precisely with corresponding values obtained by Gupta and 

Surya [9]. For a prescribed value of α2T0, an increase in the value of T  leads to increased 

values of both Rc and 
Ra , indicating that the rotation has stabilizing effect with formation of 

cells of decreased sizes on the onset of buoyancy driven convection. On the other hand, for a 

prescribed value of T , an increase in the value of α2T0 leads to a greater value of Rc indicating 

that hotter the liquid layer more the postponement of the onset of instability. It is interesting to 

note that value of the critical wave number 
Ra  remains unchanged for various values of α2T0.  

The (a, R) curves corresponding to neutral stability are plotted in Fig. 1(a), using the relation 

(4.1) for various prescribed values of T when α2T0 =0 (dotted curves) and α2T0 = 0.5 (thick 

curves), which shows that the rotation has stabilizing effect on the onset of buoyancy driven 

convection. Further, Fig. 1(a) also illustrates that a relatively hotter layer of liquid is more 

stable than the cooler one under the effect of rotation. 

      Table 1 Values of Rc and 
Ra  for various values of T  when α2T0 = 0, 0.3 and 0.5. 

 

T  
2 0 0T   

2 0 0.3T   
2 0 0.5T   

Rc Ra  Rc Ra  Rc Ra  

0 320.00 0.00 457.14 0.00 640.00 0.00 

1 320.59 0.00 457.99 0.00 641.19 0.00 

10 325.93 0.00 465.61 0.00 651.85 0.00 

100 379.26 0.00 541.80 0.00 758.52 0.00 

130 397.04 0.11 567.19 0.11 794.07 0.11 

250 457.43 0.93 653.47 0.93 914.86 0.93 

500 550.91 1.43 787.01 1.43 1101.82 1.43 

10
3
 689.95 1.89 985.64 1.89 1379.90 1.89 

10
4 

1897.89 3.56 2711.27 3.56 3795.78 3.56 

10
6 

29248.50 8.76 41783.5 8.76 58496.90 8.76 

10
8
 592685.0 19.38 846693 19.38 1.19×10

6
 19.38 
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The variation of the critical wave number 
Ra  with Taylor number T  at the onset of 

convection is illustrated in Fig. 1(b). The numerical calculations indicate that the marginal 

stability curves have minimum of R at 
Ra = 0 up to a certain threshold value of the Taylor 

number T  (≤130 approximately) and Rc occurs at a non-zero value of 
Ra when T  is greater 

than the threshold. 

 

      
                                   (a)                                         (b) 

 

           Figure. 1. (a) Neutral stability curves at the onset of Rayleigh Bènard convection 

           for various values of T  when α2T0 = 0 (dotted curves) α2T0 = 0.5 (thick curves). 

                            (b) Variation of 
Ra  as a function of T . 

The asymptotic behavior of Rc and 
Ra  obtained numerically for large value of Taylor number 

T  are given as 
2 1

3 6

2 0

2.73
( ) and 0.9( )

(1 )
c RR a

T
 


T T                                                                     (4.2) 

We find that the asymptotic behavior of Rc crucially depends on both T  and α2T0, whereas 

the asymptotic behavior of 
Ra  only depends on T and is independent of α2T0.  

 

      
                                  (a)                                       (b) 

   Figure 2  Asymptotic results in the limit T  plotted as function of log10 T  
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              (a) Rc/ T 2/3
 when α2T0 = 0 (dotted curve) α2T0 = 0.5 (thick curve). (b) aR/ T 1/6

. 

 

Fig. 2(a) shows numerically calculated values of Rc / T
2/3

 plotted as a function of log10 T  and 

verifies that Rc/ T
2/3

 ≈2.73 and 5.46 respectively when α2T0 = 0 (dotted curve) and α2T0 = 0.5 

(thick curve), as T . Fig. 2(b) shows numerically calculated values of 
Ra / T

1/6 
plotted as 

a function of log10 T and verifies that 1/6/ 0.9Ra T , as T .   

 

Case II  When surface tension is sole agency causing instability 

On substituting Γ = M/R on left hand side of the eigen value Eqn. (3.5), we find that 

 

2 2

2 4

2 2

2 0

2

2

2

1 1 7 5

1 8 448 48 6912
1

48 320 (1 ) 15 4201 1 1 1

12 180 12 180

1

6
.

240 1 1
5 2

12 180

M R a a

T

a



       
            

          
                          

 
        

  
               

T

                        (4.3)

 

When (or 0)R  implies that in the absence of buoyancy effect, surface tension is the 

sole agency causing instability. In this case, we obtain M from the eigen value Eqn. (4.3) in 

terms of a, α2T0 and T  as  

       
 

2 4

2
2 0

48
1 .

(1 ) 15 420 240 5 2

a a
M

T a

  
    

   

T

                                                        

(4.4) 

The numerical values of Mc and 
Ma  computed using the relation (4.4), for various values of 

α2T0 and T  are presented in Table 2. When T  = 0, from Table 2 we find that values of both 

Mc and 
Ma , for various values of α2T0 agree precisely with corresponding values obtained by 

Gupta and Surya [9]. 

  
  

 Table 2 Values of Mc and 
Ma  for various values of T when α2T0= 0, 0.3 and 0.5. 

 

T  
2 0 0T   

2 0 0.3T   
2 0 0.5T   

Mc Ma  Mc Ma  Mc Ma  

0 48.00 0.00 68.57 0.00 96.00 0.00 

1 48.04 0.00 68.63 0.00 96.08 0.00 

10 48.40 0.00 69.14 0.00 96.80 0.00 

100 52.00 0.00 74.29 0.00 104.00 0.00 

200 56.00 0.00 80.00 0.00 112.00 0.00 

250 57.90 0.52 82.71 0.52 115.80 0.52 

500 65.51 1.13 93.59 1.13 131.02 1.13 

10
3
 76.70 1.62 109.57 1.62 153.40 1.62 

10
4 

171.08 3.28 244.40 3.28 342.16 3.28 

10
6 

2211.29 8.35 3158.99 8.35 4422.58 8.35 

10
8
 43531.40 18.60 62187.8 18.60 87062.9 18.60 
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For a prescribed value of α2T0, an increase in the value of T  leads to increased values of 

both Mc and 
Ma , indicating that the rotation has stabilizing effect with formation of cells 

of decreased sizes on the onset of surface tension driven convection. On the other hand, 

for a prescribed value of T  increase in the value of α2T0 leads to a greater value of Mc 

indicating that hotter the liquid layer more the postponement of the onset of instability. It 

is interesting to note that value of the critical wave number 
Ma  remains unchanged for 

various values of α2T0. 

Here it is pointed out that Friedrich and Rudraiah [11] made a small but significant error 

while solving the eighth order boundary value problem using six boundary conditions 

without making use of the boundary conditions on vorticity (in terms of velocity profile) 

and choosing the velocity trial function as 2 (1 )w z z   [their Eqn. (24)], a third order 

polynomial satisfying three boundary conditions which makes no contribution to the term 

Dw(1)D
4
w(1) in the eigen value equation [their Eqn. (23)]. A comparison between the 

corresponding values of Mc and 
Ma  for various values of T obtained inaccurately by 

Friedrich and Rudraiah [11] for the basic linear temperature profile and by us (when 

2 0 0T  ) are given in the Table 3.  

           Table 3 Comparison with numerical results of Friedrich and Rudraiah[11].  

 

T  
Present analysis

 Friedrich and Rudraiah[11] 

( for f(z) = 1) 

Mc Ma  Mc Ma  

0 48.00 0.00 48.00 0.00 

1 48.04 0.00 48.26 0.29 

10 48.40 0.00 50.27 0.83 

100 52.00 0.00 61.54 1.93 

10
3
 76.70 1.62 107.14 3.57 

 

The (a, M) curves corresponding to neutral stability are plotted in Fig. 3(a), using the 

relation (4.4) for various prescribed values of T when α2T0 = 0 (dotted curves) and α2T0 = 

0.5 (thick curves), which shows that the rotation has stabilizing effect on the onset of 

surface tension driven convection. Further, Fig. 3(a) also illustrates that a relatively hotter 

layer of liquid is more stable than the cooler one under the effect of rotation. The variation 

of the critical wave number 
Ma  with T is illustrated in Fig. 3(b).  

 

       
                                  (a)                            (b) 
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 Figure. 3. (a) Neutral stability curves at the onset of Bènard-Marangoni convection for various  

values of T  when α2T0 = 0 (dotted curves) α2T0 = 0.5 (thick curves). (b) Variation of 
Ma  as a 

function of T . 

The numerical calculations indicate that the marginal stability curves have minimum of M 

at 
Ma  = 0 up to a certain value of the Taylor number T  (≤ 200 approximately) and that Mc 

occurs at a non-zero value of 
Ma  when T is greater. In this case, we note that at the onset 

of convection to occur at a non zero wave number the threshold speed of rotation  

( 200T  ) is relatively more than that ( 130T  ) obtained for the case of purely buoyancy 

driven convection discussed above. 

The asymptotic behavior of Mc and 
Ma  obtained numerically for large value of the Taylor 

number T  are given as 

        

2 1

3 6

2 0

0.2
( ) and 0.87( ) .

(1 )
c MM a

T
 


T T

                                              
                      (4.5) 

We find that the asymptotic behavior of Mc crucially depends on both T and α2T0, 

whereas the asymptotic behavior of 
Ma  only depends on T  and is independent of α2T0. 

Fig. 4(a) shows numerically calculated values of Mc /
2/3T  plotted as a function of log10 T

and verifies that Mc /
2/3T  ≈ 0.2 and 0.4 respectively when α2T0 = 0 (dotted curve) and α2T0 

= 0.5 (thick curve), as T . Fig. 4(b) shows numerically calculated values of  

Ma  / 1/6T
 
 plotted as a function of log10 T and verifies that 1/6/ 0.87Ma T , as T .  

 

 

     
                                     (a)                        (b) 

 

    Figure. 4  Asymptotic results in the limit  T  plotted as function of log10 T   

                     (a) Mc / T 2/3
 when α2T0 = 0 (dotted curve) α2T0 = 0.5 (thick curve). (b) 

Ma  / T 1/6 
. 

 

Case III when both buoyancy and surface tension cause instability 

The numerical values of Rc and corresponding wave number 
Ra , computed with the aid of 

the eigen value Eqn. (3.5), for various prescribed values of Γ and T  are presented in 

Table 4 and Table 5 when α2T0 = 0 and 0.5 respectively. For a fixed value of T , both 

Table 4 and 5 show that Rc decreases with increase in Γ (or decrease in depth d of the 

liquid layer). In other words, increasing effect of the surface tension causes reduction in 

the critical Rayleigh number Rc in the presence of rotation, irrespective of whether the 

layer of liquid is relatively cooler or hotter. Further, from Table 4 and Table 5, we also 
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find that both Rc and 
Ra  increase monotonically with T , for a prescribed value of Γ. These 

results show that the inhibiting effect of the rotation remains unchanged on the onset of 

convection driven under the joint action of buoyancy and surface tension, and that 

convective cells formed at the onset of convection are of relatively smaller in size 

irrespective of whether the layer of liquid is relatively cooler or hotter. On comparing the 

results between Table 4 and Table 5, we find that an increase in the value of α2T0 leads to 

an increased value of Rc corresponding to fixed values of Γ and T  which means that a 

relatively hotter layer of liquid is more stable than the cooler one gravitationally, in the 

presence of surface tension and under the effect of rotation. It may be noted that the 

critical wave number 
Ra  remains unchanged whether the layer of liquid is relatively hotter 

or cooler under the identical conditions otherwise. 
 

         Table 4 Values of Rc  and 
Ra  for various values of  and T  when α2T0 = 0 . 

 

T    = 0    = 0.5   = 1   =10 
Rc Ra  Rc Ra  Rc Ra  Rc Ra  

0 320.00 0.00 73.85 0.00 41.74 0.00 4.73 0.00 

10 325.93 0.00 74.64 0.00 42.14 0.00 4.77 0.00 

100 379.26 0.00 81.75 0.00 45.75 0.00 5.13 0.00 

130 397.04 0.11 84.13 0.00 46.96 0.00 5.25 0.00 

150 408.45 0.42 85.71 0.00 47.76 0.00 5.33 0.00 

200 434.31 0.74 89.61 0.38 49.76 0.29 5.53 0.10 

250 457.43 0.93 93.16 0.65 51.60 0.60 5.72 0.53 

500 550.91 1.43 107.43 1.22 59.01 1.18 6.48 1.14 

10
3
 689.95 1.89 128.46 1.70 69.92 1.67 7.60 1.63 

10
6
 29248.50 8.76 4231.48 8.46 2177.89 8.42 220.98 8.36 

 

         Table 5 Values of Rc and 
Ra  for various values of and T  when α2T0 = 0.5. 

 

T    = 0    = 0.5   = 1   =10 
Rc Ra  Rc Ra  Rc Ra  Rc Ra  

0 640.00 0.00 147.69 0.00 83.48 0.00 9.46 0.00 

10 651.85 0.00 149.27 0.00 84.28 0.00 9.54 0.00 

100 758.52 0.00 163.51 0.00 91.51 0.00 10.26 0.00 

130 794.07 0.11 168.26 0.00 93.92 0.00 10.50 0.00 

150 816.90 0.42 171.42 0.00 95.52 0.00 10.66 0.00 

200 868.63 0.74 179.22 0.38 99.52 0.29 11.06 0.10 

250 914.86 0.93 186.32 0.65 103.21 0.60 11.44 0.53 

500 1101.82 1.43 214.85 1.22 118.03 1.18 12.96 1.14 

10
3
 1379.90 1.89 256.93 1.70 139.85 1.67 15.19 1.63 

10
6
 58496.90 8.76 8462.96 8.46 4355.78 8.42 441.95 8.36 

 

The variation of the critical Rayleigh number Rc with T  for various prescribed values of Γ 

when α2T0 = 0 and 0.5 are illustrated in Fig. 5(a) and Fig. 5(b) respectively. Fig. 5(c) 

illustrates the variation of 
Ra  with T  for various prescribed values of Γ. Note that values 

of 
Ra  remain unchanged with respect to α2T0. Further, numerical calculations indicate that 

the marginal stability curves have minimum of R at 
Ra  = 0 up to a certain threshold value 

of the Taylor number T which depends upon Γ. For instance, the marginal stability curves 
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plotted in Fig. 5(d) corresponding to the case Γ = 1 in which buoyancy and surface tension 

equally act together and when α2T0 = 0 (dotted curves) and α2T0 = 0.5 (thick curves) 

illustrates that R attains its minimum at 
Ra  = 0 up to a certain threshold value of the 

Taylor number 187T   . These results indicate that the layer of liquid does not split up 

into more than single cell (largest size) up to threshold speed of the rotation. An increase 

in the value of Γ from 0 onwards means that role inclusion of the effect of surface. 

         

 

        
   (a)                       (b) 

 

 
                                              (c)                                (d) 

 

    Figure. 5  (a) Variation of Rc with T  for various values of Γ when α2T0 = 0.  

                      (b) Variation of Rc with T for various values of Γ when α2T0 = 0.5. (c) Variation of  

                      
Ra  with T  for various values of Γ (d) Variation of R with a for various values of T . 

 

For more clarity, we now discuss the results in terms of the usual parameters R and M 

when both buoyancy and surface tension effects are present. The neutral stability 

condition (3.5) may then be put in the form as 
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                 (4.6) 

Where Rc = 320 is the critical value of the Rayleigh number in the absence of surface tension 

effect (when α2T0 = 0 and T  = 0) and Mc = 48 is the critical value of the Marangoni number 

in the absence of buoyancy effect (when α2T0 = 0 and T  = 0). The numerical values of M/Mc 

(normalized) and corresponding critical wave number can be computed using (4.6), for 

prescribed normalized values R/Rc in which value of R equals its critical value corresponding 

to given Γ, T  and α2T0.  The normalized values of R, M and corresponding wave number for 

various values of T when α2T0 = 0 and 0.5, are tabulated in Table 6 and Table 7 respectively. 

For a fixed value of T , we observe from Table 6 and Table 7 that M/Mc increases with 

decrease in R/Rc, indicating that the two agencies causing instability reinforce each other, 

irrespective of whether the layer of liquid is relatively cooler or hotter.  

The (R,M)-loci corresponding to neutral stability curves for the combined surface tension and 

buoyancy effects, normalized for critical values Rc and Mc for various values of T  when 

α2T0= 0 and 0.5, are plotted in Fig. 6(a).  

 

          Table 6 Normalized R and M for various values of  and T when α2T0 = 0. 

 

  T  = 0 T   = 10
3
 T  = 10

6
 

R/Rc M/Mc ac R/Rc M/Mc ac R/Rc M/Mc ac 

0 1.00 0.00 0.00 1.00 0.00 1.89 1.00 0.00 8.76 

10
-3

 0.99 0.01 0.00 0.99 0.01 1.89 0.99 0.01 8.76 

10
-2

 0.94 0.06 0.00 0.93 0.08 1.88 0.93 0.12 8.74 

10
-1

 0.60 0.40 0.00 0.55 0.50 1.80 0.51 0.67 8.62 

0.5 0.23 0.77 0.00 0.19 0.84 1.70 0.15 0.96 8.46 

1 0.13 0.87 0.00 0.10 0.91 1.67 0.07 0.99 8.42 

10 0.02 0.99 0.00 0.01 0.99 1.63 0.01 1.00 8.36 

10
2
 0.00 1.00 0.00 0.00 1.00 1.62 0.00 1.00 8.35 

10
3
 0.00 1.00 0.00 0.00 1.00 1.62 0.00 1.00 8.35 

10
6
 0.00 1.00 0.00 0.00 1.00 1.62 0.00 1.00 8.35 

 
          Table 7 Normalized R and M for various values of  and T  when α2T0 = 0.5. 

 

  T  = 0 T   = 10
3
 T  = 10

6
 

R/Rc M/Mc ac R/Rc M/Mc ac R/Rc M/Mc ac 

0 2.00 0.00 0.00 2.00 0.00 1.89 2.00 0.00 8.76 

10
-3

 1.99 0.01 0.00 1.99 0.02 1.89 1.99 0.03 8.76 

10
-2

 1.88 0.13 0.00 1.87 0.17 1.88 1.86 0.25 8.74 

10
-1

 1.20 0.80 0.00 1.11 1.00 1.80 1.02 1.35 8.62 

0.5 0.46 1.54 0.00 0.37 1.68 1.70 0.29 1.91 8.46 

1 0.26 1.74 0.00 0.20 1.82 1.67 0.15 1.97 8.42 
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10 0.03 1.97 0.00 0.02 1.98 1.63 0.02 2.00 8.36 

10
2
 0.00 2.00 0.00 0.00 2.00 1.62 0.00 2.00 8.35 

10
3
 0.00 2.00 0.00 0.00 2.00 1.62 0.00 2.00 8.35 

10
6
 0.00 2.00 0.00 0.00 2.00 1.62 0.00 2.00 8.35 

 

The stable states correspond to the region R < Rc and M < Mc. When T  = 0, the curves 

corresponding to α2T0= 0 (dotted) and 0.5 (thick) in the (R, M) plane as shown in Fig. 6(a) are 

straight lines represented by  

       

2 0

1

(1 )c c

R M

R M T
 


  .                                                                                                                        (4.7)  

        

This indicates that there is a maximum reinforcement between the two mechanisms causing 

instability and the coupling between the two mechanisms is perfect in the absence of rotation and 

this situation occurs at zero wave number. As T  increases the locus goes away from the line 

(4.7), showing that the coupling between the two mechanisms causing instability remains no 

longer perfect and coupling between them becomes less tight. Further, Fig. 6(a) also illustrates 

that the rotation suppresses convection more effectively in a relatively hotter layer of liquid that 

the cooler one. Fig. 6(b) illustrates the variation of the critical wave number corresponding to the 

marginal stability for prescribed values of the Taylor number T , indicating that size of 

convective cells increases at the onset of convection. It may be noted that the variation of the 

critical wave number is independent of α2T0 

             

       
   (a)                       (b) 

 

    Figure. 6  a)Variation of normalized Marangoni and Rayleigh numbers for various values of T          

                    when α2T0 =0 (dotted curves) and α2T0 = 0.5 (thick curves). b) Variation of wave   

                    numbers versus normalized Rayleigh numbers for various values of T  when α2T0 = 0   

                    and 0.5. 
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5. Conclusions 

The problem of the onset of buoyancy and surface tension driven thermal convection in a horizontal 

liquid layer heated from below rotating uniformly about a vertical axis has been studied theoretically, 

using the modified linear stability analysis. We conclude that  

I. The increase in speed of rotation always has stabilizing effect on the onset of convection in 

a relatively hotter or cooler liquid layer, irrespective of whether the two mechanisms 

causing instability act individually or simultaneously. It is interesting to note that the 

critical wave number at the onset of combined surface tension and buoyancy driven 

convection is found to be zero up to a certain threshold speed of rotation (depending upon 

Γ) which becomes non-zero when speed of rotation is greater than the threshold. 

II. For large values of the Taylor number, the asymptotic behavior of the critical Rayleigh 

number (in the absence of surface tension) as well as the critical Marangoni number (in the 

absence of buoyancy) were found to be significantly dependent on whether the layer of 

liquid is relatively hotter or cooler. 

III. The two mechanisms causing instability reinforce each other and are perfectly coupled in 

the absence of rotation. However, for large values of the Taylor number, the coupling 

between the two mechanisms causing instability remains no longer perfect and it becomes 

less tight. 

IV. The uniform rotation suppresses convection more effectively in a relatively hotter layer of 

liquid than the cooler one. 

Experimental work in the laboratory would be welcomed in order to check the qualitative as well 

as quantitative changes brought in this theoretical study. 

 

 

 

References 

[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, London: Oxford University 

Press, 1961. 

[2] A. Vidal. and A. Acrivos, The influence of Coriolis force on surface-tension-driven convection, 

J. Fluid. Mech., Vol. 26, No. 4, 1966, pp. 807-818. 

[3] G. A. McConaghy and B. A.  Finlayson, Surface tension driven oscillatory instability in a 

rotating fluid layer, J. Fluid Mech., Vol. 39, 1969, pp. 49–55. 

[4] T. Namikawa, M. Takashima and S. Matsushita, The effect of rotation on convective instability 

induced by surface tension and buoyancy, J. Phy. Soc. Japan, Vol. 28, No. 5, 1970, pp. 1340-

1349. 

[5] A. Kaddame and G. Lebon, Bénard-Marangoni convection in a rotating fluid with and without 

surface deformation, Appl. Sci. Res., Vol. 52, 1994, pp. 295–308. 

[6] A. Kaddame and G. Lebon, Overstability in rotating Bénard-Marangoni cells, Micrograv. Quart, 

Vol. 4, 1994, pp. 69–74. 

[7] A. K. Gupta and S. Dhiman, Effect of Rotation on Rayleigh-Bénard-Marangoni Convection in a 

Relatively Hotter or Cooler Layer of Liquid, Int. J. Inno. Res. Sci. Eng. Tech., Vol. 4, 2015, No. 

6, pp. 3928-3938. 

[8] M. B. Banerjee, J. R. Gupta, R. G. Shandil, K. C. Sharma and D. C. Katoch, A modified analysis 

of thermal and thermohaline instability of a liquid layer heated underside, J. Math. Phys. Sci., 

Vol. 17, 1983, pp. 603-629. 



 

 

A.K. Gupta et al. Vol.1, No.1, pp.1-15, 2017 

 

 15 

 

[9] A. K. Gupta and D. Surya, Convection Driven by Surface Tension and Buoyancy in a Relatively 

Hotter or Cooler Layer of Liquid with Insulating Boundaries, ISOR J. Math., Vol. 11, 2015, No. 

5, pp. 85-90. 

[10] B. A. Finlayson, The method of weighted residuals and variational principles, Academic Press, 

New York, 1972. 

[11]  R. Friedrich and N. Rudraiah, Marangoni convection in a rotating fluid layer with non-uniform 

temperature gradient, Int. J. Heat Mass Trans., Vol. 27, 1984, No. 3, pp. 443-449. 


